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A Theorem Proving Approah to Analysis ofSeure Information Flow�Ad�am Darvas, Reiner H�ahnle, and David SandsChalmers University of Tehnology & G�oteborg UniversityDepartment of Computing SieneS-41296 G�oteborg, Swedenfdarvas,reiner,daveg�s.halmers.seAbstrat. Most attempts at analysing seure information ow in pro-grams are based on domain-spei� logis. Though omputationally fea-sible, these approahes su�er from the need for abstration and the highost of building dediated tools for real programming languages. We re-ast the information ow problem in a general program logi rather thana problem-spei� one. We investigate the feasibility of this approah byshowing how a general purpose tool for software veri�ation an be usedto perform information ow analyses. We are able to handle phenomenalike method alls, loops, and objet types for the target language JavaCard. We are also able to prove inseurity of programs.1 IntrodutionMost attempts at analysing seure information ow in programs have followedbasially the same pattern: information ow is modeled using a domain-spei�logi (suh as a type system or dataow analysis framework) with a prede�neddegree of approximation, and this leads to a fully automated but approximateanalysis of information ow. There are two problems stemming from this ap-proah. Firstly, the degree of approximation in the logi is �xed and thus seureprograms will be rejeted unless they an be rewritten. Seondly, implementinga domain-spei� tool for a real programming language is a substantial under-taking, and thus there are very few real-language tools available [11℄.This paper takes a �rst step towards an alternative approah based on ageneral theorem prover:{ We reast the information ow problem in a general program logi ratherthan a problem-spei� one. Program logis based on simple safety and live-ness properties (e.g. Hoare logi or weakest preondition alulus) are inade-quate for this purpose, sine information ow properties annot be expressedas a simple onjuntion of safety and liveness properties1. Our approah isto use dynami logi, whih admits a simple haraterisation of seure infor-mation ow for deterministi programs.1 This laim is not formal, sine it depends on preisely what one means by \safety"and \liveness"; for some onrete instanes see [13, 9, 10℄.
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{ We investigate the feasibility of the approah by showing how a generalpurpose tool for software veri�ation (based on dynami logi) an be usedto perform information ow analyses. So far, our examples are relativelysmall, but we are able to handle phenomena like method alls, loops, andobjet types. We are also able to prove inseurity of programs.2 Modeling Seure Information Flow in Dynami Logi2.1 A Dynami Logi for Java CardThe platform for our experiments is the KeY tool [1℄, an integrated tool fordevelopment and veri�ation of objet-oriented programs. Among other things,it features an interative theorem prover for formal veri�ation of Java Cardprograms. In KeY, the target program to be veri�ed and its spei�ation are bothmodeled in an instane of dynami logi (DL) [6℄ alled Java Card DL [3℄.Java Card DL generalizes variants of DL used so far for theoretial inves-tigations [6℄ or veri�ation purposes [2℄, beause it handles suh phenomena asside e�ets, aliasing, objet types, exeptions, as partly explained below. Otherprogramming languages than Java Card ould be axiomatized in DL. Onethis is done, the KeY tool an then be used on them.Like other interative theorem provers for software veri�ation, the provingproess in KeY is partially automated by heuristi ontrol of appliable rules.Dedution in Java Card DL is based on symboli program exeution andsimple program transformations and is, thus, lose to a programmer's under-standing of Java. It an be seen as a modal logi with a modality hpi for everyprogram p, where hpi refers to the state (if p terminates) that is reahed byrunning program p.The program formula hpi� expresses that the program p terminates in astate in whih � holds. A formula �! hpi is valid if for every state s satisfyingpre-ondition � a run of the program p starting in s terminates, and in theterminating state the post-ondition  holds.Thus, the DL formula �! hpi is similar to the total-orretness Hoare triplef�g p f g or to � implying the weakest preondition of p wrt  . But in ontrast toHoare logi and weakest preondition alulus (wp), the set of formulas of DL islosed under the usual logial operators and �rst order quanti�ers. For example,in Hoare logi and wp the formulas � and  are pure �rst-order formulas,whereas in DL they an ontain programs. In general, program formulas anappear anywhere in DL as subformulas.The programs in Java Card DL formulas are basially exeutable JavaCard ode. Eah rule of the alulus for Java Card DL spei�es how to exeuteone partiular statement, possibly with additional restritions. When a loop ora reursive method all is enountered, it is neessary to perform indution overa suitable data struture.In Java (like in other objet-oriented programming languages), di�erent ob-jet variables an refer to the same objet. This phenomenon, alled aliasing,
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auses serious diÆulties for handling of assignments in a alulus for JavaCard DL.For example, whether or not a formula \o1:a = 1;" still holds after the (sym-boli) exeution of the assignment \o2:a = 2;", depends on whether or not o1and o2 refer to the same objet.Therefore, Java assignments annot be symbolially exeuted by syntatisubstitution. In Java Card DL alulus a di�erent solution is used, based onthe notion of (state) updates. These updates are of the form flo := valg andan be put in front of any formula. The semantis of flo := valg� is the sameas that of hlo = val;i�. The di�erene between an update and an assignment issyntatial. The expressions lo and val must be simple in the following sense:lo is either (i) a program variable var, or (ii) a �eld aess obj:attr, or (iii) anarray aess arr[i℄; and val is a logial term (that is free of side e�ets). Moreomplex expressions are not allowed in updates.The syntatial simpliity of lo and val has semantial onsequenes. Inpartiular, omputing the value of val has no side e�ets. The KeY system hassimpli�ation rules to ompute the result of applying an update to logial termsand program-free formulas. Computing the e�et of an update on any program p(that is, a formula hpi�) is delayed until p was symbolially exeuted using otherrules of the alulus. Thus, ase distintions on objet identity are not merelydelayed, but an often be avoided altogether, beause (i) updates are simpli�edbefore their e�et is omputed and (ii) their e�et is omputed when maximalinformation is available (after symboli exeution of the program).There is another important usage of updates. In Java Card DL there aretwo di�erent types2 of variables: program (loal) variables and logi variables.Program variables an our in program parts of a formula as well as outsideprogram parts. Syntatially, they are onstants of the logi. Their semanti in-terpretation depends on the program exeution state. Logi variables our onlybound (quanti�ed) and never in programs. Syntatially, they are variables of thelogi. Their semanti interpretation is rigid, that is, independent of the programstate. This is neessary for being able to store previous exeution states. Hene,in Java Card DL quanti�ation over program variables like \ 8x: hp[x℄i [x℄" issyntatially illegal3.Updates remedy this problem. Suppose we want to quantify over x of typeinteger. We delare an integer program variable px, quantify over a logi variableof type integer lx, and use an update to assign the value of lx to px:hint px;i (8lx : int: fpx := lxghp[px℄i [lx; px℄) (1)2.2 Seure Information Flow Expressed in Dynami LogiWe use the greater expressivity of DL as ompared to Hoare logi and wpto give a very natural logi modeling of seure information ow. Let l be the2 Ultimately, this distintion of variables is demanded by side e�ets in imperativeprogramming languages like Java. It is not present in \pure" DL [6℄.3 To stress ourene of variables in formulas or programs, we use the notion p[x℄, et.
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low-seurity variables of program p and h the high-seurity ones. We want toexpress that by observing the initial and �nal values of l, it is impossible toknow anything about the initial value of h [5℄. In other words:\When starting p with arbitrary values l, then the value r of l afterexeuting p, is independent of the hoie of h."This an be diretly formulated in standard DL:8l: 9r: 8h: hpi r := l (2)To illustrate our formulation in Java Card DL, assume that all variables are oftype integer and program variables and logi variables are pre�xed by \p" and\l", respetively. Using (1), we obtain the formula:hint pl; int ph;i (8 ll:int: 9 r:int:8 lh:int: fpl := llgfph := lhghpi r := pl) (3)For sake of readability we use the simpler DL notation (2) in the rest of thepaper, unless the atual Java Card DL formulation is of interest.With the hoie of DL, we exploit that one an quantify over variables o-urring anywhere in the assertions. Joshi and Leino [7, Cor. 3℄ arrive at a similarformulation in Hoare logi, but there it is neessary to provide a onrete funtionfor the values of r. Moreover, their haraterization assumes that p terminates.In DL we an easily express the additional requirement that no information onthe value of h shall be leaked by p's termination behaviour:8 l: (9 h: hpi true! 9 r:8 h: hpi r := l) (4)In addition to (2) this expresses that, for any hoie of l, if p terminates forsome initial value of h, then it terminates for all values.3 Interative Proving of Seure Information FlowIn our experiments, we onsidered only problems of the form (2) (we ould haveused form (4), but our examples are all terminating, so the anteedent of theimpliation is true for all values of h).In this setion, we �rst show our approah on small programs taken from theliterature. Then a program ontaining a while loop will be examined; �nallywe demonstrate with a somewhat bigger example how the approah works forprograms with objet types.3.1 Simple ProgramsWe demonstrate the feasibility of our approah with some examples taken frompapers [7, 11℄. Table 1 shows the example programs with the orresponding num-ber of rules applied in the KeY system and the required user interation, if any.Note that l, h, and r are single variables in eah ase.
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program rules applied user interationsl=h; 7 {h=l; 10 instantiationl=6; 10 instantiationl=h; l=6; 11 instantiationh=l; l=h; 11 instantiationl=h; l=l-h; 12 instantiationif (false) l=h; 10 instantiationif (h>=0) l=1; else l=0; 21 {if (h==1) l=1; else l=0; l=0; 29 instantiationTable 1. Example programs.When evaluating the data one must keep in mind that we used the KeY proveras it omes. The KeY system features so-alled talets, a simple, yet powerfulmehanism by virtue of whih users an extend the prover with appliationspei� rules and heuristis.The user interation instantiation in Table 1 means a single quanti�er elim-ination by supplying a suitable instane term. In the KeY system, the user ansimply drag-and-drop the desired term from any plae in the urrent goal over arule appliation. In the examples, one mainly has to speify a Skolem term or aonstant (e.g., 6 in program \l = 6;") to instantiate the result value r in (2). Atthe time, when r must be instantiated, this kind of interation ould mostly beeliminated by heuristis that perform instantiation automatially, when there isonly one andidate.Not ounting the time for user interations, all proofs are obtained withinfrations of a seond.If a program is seure, then the DL formula (2) is provable. For inseureprograms the proof annot be ompleted, and there will be one or more opengoal. Among our examples there are two inseure programs. Table 2 ontainsthe goals (in this ase one for eah program) that remain open in an attempt toprove seurity of these programs in KeY. It is easy to observe that these formulasare not provable. In fat, the open goals give a diret hint to the soure of theseurity breah.It is important to note that the number of applied rules and user interationsdoes not inrease more than linearly if we take the omposition of two programs.For example, to verify seurity of the program \h = l; l = 6;", one instantiationis required, and the prover applies 11 rules. By omparison, to prove seurity ofthe onstituents \h = l;" and \l = 6;", one instantiation and 10 rule appliationsare used in eah ase.3.2 Proving InseurityTo prove that the programs in Table 2 are inseure, the inseurity property hasto be formalized. This an be done by simply taking the negation of formula (2).
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program open goall=h; 9r: 8h: r := hif (h>=0) l=1; else l=0; 9r: (8h: (!(h < 0)! r := 1)& 8h: (h < 0! r := 0))Table 2. Open goals for inseure programs.program rules applied user interationsl=h; 13 instantiationif (h>=0) l=1; else l=0; 34 arithmeti, instantiationTable 3. Proving inseurity.The syntati losure property of DL is ruial again here. Negating (2) andstraightforward simpli�ation yields:49 l:8 r: 9h: hpi r 6= l (5)The intuitive meaning of the formula is the following:\There is an initial value l, suh that for any possible �nal value r of lafter exeuting p, there exists an initial value h whih an prevent l fromtaking that �nal value r."Table 3 ontains the orresponding data of the proofs of inseurity. The userinteration arithmeti means that the user has to apply (few) rules manually tolose subgoals ontaining arithmeti properties (e.g. 8 a: (a := 0 ! a 6= 1)). Atthe moment these annot be handled automatially by the prover.3.3 LoopsIn this setion we report on an experiment with a program ontaining a whileloop. The DL formula is the following:8 l: 9 r:8 h: (h > 0! hwhile (h > 0) fh��; l = h; gil := r) (6)The loop ontains the inseure statement l = h; but the ondition of exiting theloop is h := 0, thus the �nal value of l is always 0, independently of the initialvalue of h.To prove properties of programs ontaining loops requires in general to per-form indution over a suitable indution variable. Finding the right indutionhypothesis is not an easy task, but one it is found, ompleting the proof isusually a mehanial proess; if one runs into problems, this is a hint, that the4 We do atually a little more than is required by proving termination of p. Formula (5)really is the negation of (4).
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hypothesis was not orret. Heuristi tehniques to �nd indution hypothesesare available in the literature and will be built into KeY in due time.After the indution hypothesis is given to the prover, three open goals mustbe proven: (i) after exiting the loop, the post ondition holds (indution base),(ii) the indution step, (iii) the indution hypothesis implies the original subgoal.To prove seurity of (6), the prover took 163 steps; in addition to establish-ing the indution hypothesis, several kinds of user interations were required:instantiation, unwinding the loop, and arithmeti.The proof annot be quite ompleted with the urrent version of the KeYtool, beause the update simpli�er is not (yet) powerful enough. In order to showthat this is in fat merely a tehnial problem, we outline the problem in detail.One must be able to prove that the following two program states (expressed bythe orresponding updates) are idential:fpl := 1 + 1g fpl := 2gfph := 1 + 1g fph := 1 + 1gfpl := phgThe bottommost update is the most reent update (the sequene of updatesparallels the sequene of assignments that led to their reation). The i areSkolem onstants.3.4 Using Objet TypesNext we demonstrate that our approah applies to an objet-oriented setting ina natural way. The example presented here is taken from [8, Fig. 5.℄, where anobjet (spei�ed by its statehart diagram) leaks information of a high variablethrough one of its operations. The orresponding Java implementation is:publi lass Aount fint balane;boolean extraServie;publi void writeBalane(int amount) fif (amount>=10000) extraServie=true; else extraServie=false;balane=amount;gpubli int readBalane() freturn balane;gpubli boolean readExtra() freturn extraServie;ggThe balane of an Aount objet an be written by the method writeBalaneand read by readBalane. If the balane is over 10000, variable extraServieis set to true, otherwise to false. The state of that variable an be read by
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readExtra. The balane of the aount and the return value of readBalaneare seure, whereas the value of extraServie is not.The program is inseure, sine partial information about the high-seurityvariable an be inferred via the observation of a low-seurity variable. That is,alling writeBalanewith di�erent parameters an lead to di�erent observationsof the return value of readExtra.To prove inseurity of this program, we ontinue to use (2,5). We give theatual Java Card DL formula of seurity to show how naturally objets arewoven into the logi. Where neessary, we use variables with objet types in thelogi (a detailed aount on how to render objet types in �rst-order logi is [4℄).hAount o; int amount; boolean result;i8 lextraServie : boolean: 9 r : boolean:8 lamount : int:fo:extraServie := lextraServiegfamount := lamountgho:writeBalane(amount); result = o:readExtra();ir := resultThe prover applies 62 rules and stops at the unprovable open goal:9 r : boolean: (8 lamount : int: (!(lamount < 10000)! r := TRUE) &8 lamount : int: (lamount < 10000! r := FALSE))Inseurity of the program was proved in 82 steps with three user interations.4 An Alternative Formulation of Seure InformationFlow in Dynami LogiThere is another approah whih aptures the de�nition of seure informationow in an even more natural way than (2):\Running two instanes of p with equal low-seurity values and arbitraryhigh-seurity values, the resulting low-seurity values are equal too."This an be rendered in DL as follows:8 h:8 h0:8 l: (l := l0 ! hp[l; h℄; p[l0; h0℄il := l0) (7)It is easy to see the drawbaks of this formulation:{ The number of seurity-relevant program variables is doubled, therefore, thestate spae might inrease onsiderably.{ The approah an be used as it is only when the two instanes of p donot interfere, that is, p[l; h℄ uses only the variables l and h. Otherwise, theremaining environment must be preserved.{ Leakage via termination behaviour annot be expressed in an obvious way.On the other hand, this approah potentially has important advantages:{ Instantiation of r is not required. Hene, all seure programs in Table 1 anbe proved seure without any user interation.
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{ In ertain ases programs need to leak some on�dential information, in orderto serve their intended purpose [12℄. Formulations (2,4) would lassify theseas inseure programs. This is too restritive when the leakage was intended.We an extend (7) to express intended leakage via a suitable preondition.For example, if the least signi�ant bit of h is leaked intentionally, then weadd \hmod 2 := h0mod 2" to the preondition.{ Exeuting the two instanes of p in parallel (lokstep), instead of sequentially�rst p[l; h℄ and then p[l0; h0℄, may lead to eÆient proofs: after eah step,information that is irrelevant for the seurity analysis at hand an be deleted.{ Expressing inseurity an be easily done by taking the negation of (7). How-ever, instantiation will be needed on the variables.It is future work to investigate the possibilities and limitations of this ap-proah, but it seems likely that both formulations should be used in ombinationfor di�erent types of problems and programs.5 Disussion and Future WorkIn this paper we suggested an interative theorem prover for program veri�ationas a framework for heking seure information ow properties. We showed thefeasibility of the approah by applying it to a number of examples taken fromthe literature. Even without any tuning of the prover, the examples ould bemehanially heked with few user interations. Within a short amount of time,we managed to handle non-trivial properties suh as method alls (with sidee�ets), loops, objet types. The method allows also to prove inseurity.Most approahes to seure information ow are based on stati analysis meth-ods using domain-spei� logis. These have the advantage of being usually de-idable in polynomial time. On the other hand, they must neessarily abstrataway from the target program. This beomes problemati when dealing withomplex target languages suh as Java Card. By taking a theorem provingapproah and Java Card DL, whih fully models the Java Card semantis,we an prove any property that is provable in �rst-order logi. Our experimentsindiate that the penalty in terms of veri�ation ost might be tolerable.Joshi and Leino [7℄ onsider how seurity an be expressed in various logialforms, leading to a haraterisation of seurity using a Hoare triple. This hara-terisation is similar to the one used here|with the ruial di�erene that theirformula ontains a Hoare triple, but it is not a statement in Hoare logi, andthus annot be plugged diretly into a veri�ation tool based on Hoare logi.Thus, the greater expressivity of dynami logi has important advantages overHoare logi in this ontext. We an provide mehanized, partially automatedproofs for Java Card as target language.In order to treat more realisti examples, we plan a number of improvements:on the side of the logi modeling, it might be useful to avoid existential quanti�-ation over the result values r in (2,4). In dynami logi there are possibilitiesto do this, but they make proof obligations more ompliated. It is not lear
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